Abstract

Identified as extinction features against the bright Galactic mid-infrared background, infrared dark clouds (IRDCs) are thought to harbor the very earliest stages of star and cluster formation. In order to better characterize the properties of their embedded cores, we have obtained new 24um, 60-100um, and sub-millimeter continuum data toward a sample of 38 IRDCs. The 24um Spitzer images reveal that while the IRDCs remain dark, many of the cores are associated with bright 24um emission sources, which suggests that they contain one or more embedded protostars. Combining the 24um, 60-100um, and sub-millimeter continuum data, we have constructed broadband spectral energy distributions (SEDs) for 157 of the cores within these IRDCs and, using simple gray-body fits to the SEDs, have estimated their dust temperatures, emissivities, opacities, bolometric luminosities, masses and densities. Based on their Spitzer/IRAC 3-8um colors and the presence of 24um point source emission, we have separated cores that harbor active, high-mass star formation from cores that are quiescent. The active `protostellar' cores typically have warmer dust temperatures and higher bolometric luminosities than the more quiescent, perhaps `pre-protostellar', cores. Because the mass distributions of the populations are similar, however, we speculate that the active and quiescent cores may represent different evolutionary stages of the same underlying population of cores. Although we cannot rule out low-mass star-formation in the quiescent cores, the most massive of them are excellent candidates for the `high-mass starless core' phase, the very earliest in the formation of a high-mass star.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.