Abstract
Infection of mice with cytopathic foot-and-mouth disease virus (FMDV) induces a rapid and specific thymus-independent (TI) neutralizing antibody response that promptly clears the virus. Herein, it is shown that FMDV-infected dendritic cells (DCs) directly stimulate splenic innate-like CD9(+) B lymphocytes to rapidly (3 days) produce neutralizing anti-FMDV immunoglobulin M antibodies without T-lymphocyte collaboration. In contrast, neither follicular (CD9(-)) B lymphocytes from the spleen nor B lymphocytes from lymph nodes efficiently respond to stimulation with FMDV-infected DCs. The production of these protective neutralizing antibodies is dependent on DC-derived interleukin-6 (IL-6) and on CD9(+) cell-derived IL-10 secretion. In comparison, DCs loaded with UV-inactivated FMDV are significantly less efficient in directly stimulating B lymphocytes to secrete TI antibodies. A critical role of the spleen in the early production of anti-FMDV antibodies in infected mice was also demonstrated in vivo. Indeed, either splenectomy or functional disruption of the marginal zone of the spleen delays and reduces the magnitude of the TI anti-FMDV antibody response in infected mice. Together, these results indicate that in addition to virus localization, the FMDV-mediated modulation of DC functionality is a key parameter that collaborates in the induction of a rapid and protective TI antibody response against this virus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.