Abstract
It is not clear whether Mars once possessed active tectonics, yet the question is critical for understanding the thermal evolution of Mars, and the origin and longevity of its early dynamo. To address these issues, we have coupled mantle flow simulations, together with parameterized core evolution models, to simulate the early evolution of Mars-like planets, and constrain the influence of early mobile-lid tectonics on core evolution. We have explored a wide parameter suite, encapsulating a range of uncertainties in initial conditions, rheological parameters, and surface strength. We present successful models that experience early mobile-lid behaviour, with a later transition into a stagnant-lid mode, which reproduce core dynamo histories similar to the magnetic history of early Mars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.