Abstract

Today, it is known that the majority of diamonds are crystallized mostly from a metasomatic agent close in the main characteristics to carbonatite melts acting upon mantle rocks, and therefore, diamonds are located in the interstitial space of these rocks. So far, diamond has never been found included in other kimberlitic or xenolithic minerals. We have found a diamond inclusion inside the kimberlitic olivine grain, which is the first find of its kind. The diamond crystal is to have been captured by the growing olivine at quite high temperatures (more than 1400 °C) early in the history of the cratonic lithospheric mantle formation. The event had taken place long before the depleted peridotite cooled down to the temperature of the Middle Archean cratonic geotherm corresponding to the diamond stability field at depths where carbonatite melts can react with depleted peridotite, making it a diamond-bearing rock. On the one hand, this find provides evidence that diamonds can crystallize from the high-temperature silicate melt with some carbonate component. On the other hand, the diamond was found coexisting with a sulfide inclusion in the same olivine, i.e., crystallization from a sulfide melt may be another way of diamond formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.