Abstract

Signaling by the kinase cascade composed of Raf, MEK, and ERK is critical for animal development and is often inappropriately activated in human malignancies. We sought to identify factors that control signaling mediated by the Caenorhabditis elegans Raf ortholog LIN-45. A genetic screen showed that the degradation of LIN-45 required the E3/E4 ubiquitin ligase UFD-2. Both UFD-2 and its partner, the ATP-dependent segregase CDC-48, were required for the developmental regulation of LIN-45 protein abundance. We showed that UFD-2 acted in the same pathway as the E3 ubiquitin ligase SCFSEL-10 to decrease LIN-45 abundance in cells in which Raf-MEK-ERK signaling was most highly active. UFD-2 also reduced the protein abundance of activated LIN-45 carrying a mutation equivalent to the cancer-associated BRAF(V600E) variant. Our structure-function studies showed that the disruption of LIN-45 domains that mediate protein-protein interactions, including the conserved cysteine-rich domain and 14-3-3 binding motifs, were required for UFD-2-independent degradation of LIN-45. We propose a model in which UFD-2 and CDC-48 act downstream of SCFSEL-10 to remove LIN-45 from its protein interaction partners and facilitate proteasomal targeting and degradation. These findings imply that UFD-2 and CDC-48 may be important for Raf degradation during normal and oncogenic Ras and MAPK signaling in mammalian cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call