Abstract

Although endoplasmic reticulum (ER) stress is critical in various liver diseases, its role in acute-on-chronic liver failure (AoCLF) caused by acute exacerbation of chronic hepatitis B (CHB) is still elusive. This study aimed to analyse ER stress responses in the progression of HBV-related AoCLF. Normal liver tissues (n = 10), liver tissues of CHB (n = 12) and HBV-related patients with AoCLF (n = 19) were used. Electron microscopy of the ultrastructure of the ER was carried out on liver specimens. The gene and protein expression levels of ER stress-related genes were measured. We further analysed the correlation between the expression levels of ER stress-related molecules and liver injury. Electron microscopy identified typical features of the ER microstructure in AoCLF subjects. Among the three pathways of unfolded protein responses, the PKR-like ER kinase and inositol-requiring enzyme 1 signalling pathway were activated in CHB subjects and inactivated in AoCLF subjects, while the activating transcription factor 6 signalling pathway was sustained in the activated form during the progression of AoCLF; the expression of glucose-regulated protein (Grp)78 and Grp94 was gradually decreased in AoCLF subjects compared to healthy individuals and CHB subjects, showing a negative correlation with serum ALT, AST and TBIL; moreover, the ER stress-related apoptosis molecules were activated in the progression of acute exacerbation of CHB. The dysregulated ER stress response may play a complicated role in the pathogenesis of AoCLF, and a severe ER stress response may predict the occurrence of AoCLF caused by acute exacerbation of CHB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.