Abstract

For a certain type of automobile disc brakes, brake discs and friction linings were modeled by Pro/E. The dynamics simulations of braking process on disc brake were performed by the frictional contact algorithm and nonlinear finite element method. Distribution of stress, strain and displacement on the brake parts were investigated with different initial velocity. Analysis results shown that redistributions of stress and strain had occurred on the face of brake disc and friction linings in braking process. Meanwhile, the increased initial velocity resulted in increased stress and stain. Besides the stress concentrations appeared in brake disc role and friction lining corners at the beginning of braking, however, stress and stain became uniform along the braking. Analysis results provided the research of the optimum design and testing of disc brake with theoretic gist. And some improvement measures to the structure of disc brake were proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call