Abstract

This paper concerns the dynamical behavior of weakly reversible, deterministically modeled population processes near the facets (codimension-one faces) of their invariant manifolds and proves that the facets of such systems are “repelling.” It has been conjectured that any population process whose network graph is weakly reversible (has strongly connected components) is persistent. We prove this conjecture to be true for the subclass of weakly reversible systems for which only facets of the invariant manifold are associated with semilocking sets, or siphons. An important application of this work pertains to chemical reaction systems that are complex-balancing. For these systems it is known that within the interior of each invariant manifold there is a unique equilibrium. The global attractor conjecture states that each of these equilibria is globally asymptotically stable relative to the interior of the invariant manifold in which it lies. Our results pertaining to weakly reversible systems imply that this conjecture holds for all complex-balancing systems whose boundary equilibria lie in the relative interior of the boundary facets. As a corollary, we show that the global attractor conjecture holds for those systems for which the associated invariant manifolds are two-dimensional.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.