Abstract

BackgroundUnderstanding the composition of the microbial community and its functional capacity during weaning is important for pig production as bacteria play important roles in the pig’s health and growth performance. However, limited information is available regarding the composition and function of the gut microbiome of piglets in early-life. Therefore, we performed 16S rRNA gene and whole metagenome shotgun sequencing of DNA from fecal samples from healthy piglets during weaning to measure microbiome shifts, and to identify the potential contribution of the early-life microbiota in shaping piglet health with a focus on microbial stress responses, carbohydrate and amino acid metabolism.ResultsThe analysis of 16S rRNA genes and whole metagenome shotgun sequencing revealed significant compositional and functional differences between the fecal microbiome in nursing and weaned piglets. The fecal microbiome of the nursing piglets showed higher relative abundance of bacteria in the genus Bacteroides with abundant gene families related to the utilization of lactose and galactose. Prevotella and Lactobacillus were enriched in weaned piglets with an enrichment for the gene families associated with carbohydrate and amino acid metabolism. In addition, an analysis of the functional capacity of the fecal microbiome showed higher abundances of genes associated with heat shock and oxidative stress in the metagenome of weaned piglets compared to nursing piglets.ConclusionsOverall, our data show that microbial shifts and changes in functional capacities of the piglet fecal microbiome resulted in potential reductions in the effects of stress, including dietary changes that occur during weaning. These results provide us with new insights into the piglet gut microbiome that contributes to the growth of the animal.

Highlights

  • Understanding the composition of the microbial community and its functional capacity during weaning is important for pig production as bacteria play important roles in the pig’s health and growth performance

  • Microbial diversity of nursing and weaned piglets based on 16S 16S ribosomal ribonucleic acid (rRNA) gene data Sequencing of the 16S rRNA genes in the fecal samples produced a total of 1,947,836 reads after quality-filtering, with a mean sequence number of 97,392 ± 49,139 reads per sample (Additional file 1: Table S1)

  • Our data suggest that the early-life stressors caused by dietary change could be an important driver to lead to these microbiome shifts

Read more

Summary

Introduction

Understanding the composition of the microbial community and its functional capacity during weaning is important for pig production as bacteria play important roles in the pig’s health and growth performance. Weaning is a stressful event in a pig’s life and can disrupt the piglet gut microbiome, which can lead to poor health and growth performance [4]. Piglets experience a wide variety of stresses such as physiological, environmental and social challenges during the weaning transition [4]. This is important to the swine industry since the changes in the composition of the gut microbiota after weaning can lead to an increased susceptibility of piglets to post-weaning diarrhea.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.