Abstract
The dynamics of the O((1)D) + HCl(v = 0, j = 0) --> Cl + OH reaction at a 0.26 eV collision energy has been investigated by means of a quasiclassical trajectory (QCT) and statistical quantum and quasiclassical methods. State-resolved cross sections and Cl atom velocity distributions have been calculated on two different potential energy surfaces (PESs): the H2 surface (Martinez et al. Phys. Chem. Chem. Phys. 2000, 2, 589) and the latest surface by Peterson, Bowman, and co-workers (PSB2) (J. Chem. Phys. 2000, 113, 6186). The comparison with recent experimental results reveals that the PSB2 PES manages to describe correctly differential cross sections and the velocity distributions of the departing Cl atom. The calculations on the H2 PES seem to overestimate the OH scattering in the forward direction and the fraction of Cl at high recoil velocities. Although the comparison of the corresponding angular distributions is not bad, significant deviations with a statistical description are found, thus ruling out a complex-forming mechanism as the dominant reaction pathway. However, for the ClO + H product channel, the QCT and statistical predictions are found to be in good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.