Abstract

BackgroundBladder cancer (BC) is the most common malignant disease of the urinary tract. Recurrent high grade non muscle invasive BC carries a serious risk for progression and subsequent metastases. The most common preclinical mouse model for bladder cancer relies on administration of N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) to mice. BBN-induced tumors in mice recapitulate the histology of human BC and were characterized with an overexpression of markers typical for basal-like cancer subtype in addition to a high mutational burden with frequent mutations in Trp53, similar to human muscle invasive BC.MethodsBladder cancer was induced in C57BL/6J male mice by administering the BBN in the drinking water. A thorough histopathological analysis of bladder specimen during and post BBN treatment was performed at 2, 4, 16, 20 and 25 weeks. RNA sequencing and qPCR was performed to assess the levels of expression of immunologically relevant genes at 2 weeks and 20 weeks during and post BBN treatment.ResultsWe characterized the dynamics of the inflammatory response in the BBN-induced BC in mice. The treatment with BBN had gradually induced a robust inflammation in the first 2 weeks of administration, however, the inflammatory response was progressively silenced in the following weeks of the treatment, until the progression of the primary carcinoma. Tumors at 20 weeks were characterized with a marked upregulation of IL18 when compared to premalignant inflammatory response at 2 weeks. In accordance with this, we observed an increase in expression of IFNγ-responsive genes coupled to a pronounced lymphocytic infiltrate during the early stages of malignant transformation in bladder. Similar to human basal-like BC, BBN-induced murine tumors displayed an upregulated expression of immunoinhibitory molecules such as CTLA-4, PD-L1, and IDO1 which can lead to cytotoxic resistance and tumor escape.ConclusionsDespite the recent advances in bladder cancer therapy which include the use of checkpoint inhibitors, the treatment options for patients with locally advanced and metastatic BC remain limited. BBN-induced BC in mice displays an immunological profile which shares similarities with human MIBC thus representing an optimal model for preclinical studies on immunomodulation in management of BC.

Highlights

  • Bladder cancer (BC) is the most common malignant disease of the urinary tract

  • In order to investigate the dynamics of inflammatory response during butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder carcinogenesis in mice, we performed RNA-seq, RT-qPCR array and a thorough histopathological analysis of bladder specimen at different time points during and post BBN treatment of male C57BL/6 mice

  • The morphologic changes followed the focalized distribution throughout the rest of the treatment timeline, after a 12-week BBN treatment, at week 14, 1 in 7 mice displayed focal urothelial dysplasia, whereas 5 in 7 mice displayed focal carcinoma in situ (CIS) (Fig. 1c D, D′) and 1 in 7 mice

Read more

Summary

Introduction

Bladder cancer (BC) is the most common malignant disease of the urinary tract. Recurrent high grade non muscle invasive BC carries a serious risk for progression and subsequent metastases. BBN-induced tumors in mice recapitulate the histology of human BC and were characterized with an overexpression of markers typical for basal-like cancer subtype in addition to a high mutational burden with frequent mutations in Trp, similar to human muscle invasive BC. Muscle invasive bladder cancer (MIBC) is a highly heterogeneous group of tumors which was classified into molecular subtypes that display distinct genomic and transcriptomic profiles similar to those observed in breast cancer [3]. Basal Cluster III, enriched with tumors with mixed squamous morphology, basal markers KRT14, KRT5, and TP63, includes a high cancer stem-content and poor prognosis, while Cluster IV, which shares similarities with claudin-low breast cancer, displays active immunosuppressive phenotype, despite the overall enrichment in the immune gene signature [5]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.