Abstract

The dynamics of the flow field surrounding New Zealand are investigated using a series of global ocean models. The physical mechanisms governing the direction, magnitude, and location of the East Australian Current (EAC), the Tasman Front, the East Auckland Current (EAUC), and the East Cape Current (ECC) are studied using numerical simulations whose complexity is systematically increased. As new dynamics are added to each successive simulation, their direct and indirect effects on the flow field are examined. The simulations have horizontal resolutions of 1/8°, 1/16°, or 1/32° for each variable, and vertical resolutions ranging from 1.5-layer reduced gravity to 6-layer finite depth with realistic bottom topography. All simulations are forced by the Hellerman and Rosenstein monthly wind stress climatology. Analysis of these simulations shows that several factors play a critical role in governing the behavior of the examined currents. These factors include 1) mass balance of water pathways through the region, 2) gradients in the wind stress curl, 3) nonlinear flow instabilities, and 4) upper-ocean–topographic coupling due to mixed baroclinic and barotropic instabilities. Transport streamfunctions of a linear reduced gravity model reproduce the large-scale features well but produce an EAUC that flows counter to the observed direction. The residual of the mass balance of the transport through the Tasman Sea, the basinwide transport at 32°S, and the transport of the South Pacific subtropical gyre east of New Zealand determines the direction of the EAUC. The 6-layer nonlinear model allows isopycnal outcropping, which changes the transport through the Tasman Sea and produces an EAUC flowing in the observed direction. Gradients in the zonally integrated wind stress curl field determine the coastal separation points of the EAC, the EAUC, and the ECC, while a combination of nonlinear flow instabilities and upper-ocean–topographic coupling contribute to the formation of meanders in the Tasman Front. Increased resolution results in greater mixed baroclinic–barotropic instabilities and thus more upper-ocean–topographic coupling and surface variability, giving a more accurate simulation of topographically controlled mean meanders in the Tasman Front.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call