Abstract

We examine numerically the formation of small black holes from primordial density fluctuations in a radiation-dominated spatially flat Friedmann–Robertson–Walker spacetime. Large amplitude fluctuations might be expected to form black holes, while smaller fluctuations will be washed out by the expansion of the universe. We have studied the interface between these two types of behaviour. Unlike earlier studies which suggested that there was no lower limit to the mass of a black hole, this work suggests that there is a minimum mass for a primordial black hole of the order of one ten thousandth of the mass contained within the horizon. We discuss the implications for critical collapse studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.