Abstract

We have studied ethane trapping into a second-layer state on Pt(111) using supersonic molecular beam techniques to investigate the dynamics of extrinsic precursor adsorption. Initial trapping probabilities of ethane on an ethane covered Pt(111) surface were measured directly as a function of incident translational energy and incident angle at a surface temperature of 95 K. At all incident translational energies and angles the initial trapping probability into the second-layer state is higher than on a clean surface. In addition the initial trapping probability into the second layer decreases less with incident translational energy than the initial trapping probability onto the clean surface. In contrast to previous findings for non-dissociative weak adsorption on clean surfaces showing the initial trapping probability to increase with incident angle, the initial trapping probability into the second layer is independent of incident angle indicating “total” energy scaling. A dynamical corrugation of the adsorbed layer is postulated to rationalize this strong deviation from the “normal” energy scaling implicit in one-dimensional theories of trapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.