Abstract
When a flowing fluid is channeled by chemical or physical precipitation, then tubular structures form. These patterns are common in nature, however, there have been few quantitative studies of their formation. Here, we report measurements of the radius, length, and internal pressure, as functions of time and flow rate, for precipitation tubes growing in chemical gardens. Using these measurements we develop models for how single tubes grow and also for how multiple tubes interact with each other. In particular, when multiple tubes grow from the same source they compete for resources; short/wide tubes have less resistance to flow, and so consume more of the resources, "killing" the growth of long/narrow tubes. These tube interactions are described by an equation similar to an unstable logistic equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.