Abstract

This paper presents a deterministic SIS model for the transmission dynamics of malaria, a life-threatening disease transmitted by mosquitos. Four species of the parasite genus Plasmodium are known to cause human malaria. Some species of the parasite have evolved into strains that are resistant to treatment. Although proportions of Plasmodium species vary considerably between geographic regions, multiple species and strains do coexist within some communities. The mathematical model derived here includes all available species and strains for a given community. The model has a disease-free equilibrium, which is a global attractor when the reproduction number of each species or strain is less than one. The model possesses quasi-endemic equilibria; local asymptotic stability is established for two species, and numerical simulations suggest that the species or strain with the highest reproduction number exhibits competitive exclusion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.