Abstract

The mathematical model for monkeypox infection using the ψ–Hilfer fractional derivative is presented in this study. The integer order formulation is extended to the fractional order system by employing the ψ–Hilfer fractional derivative. The fractional order model analysis is provided. We investigate the model’s local asymptotical stability when R0<1. When R0>1, the global asymptotical stability result is displayed. We parameterize the model using recently reported cases of monkeypox infection in the United States. We calculated the basic reproduction using the estimated data and found it to be R0≈0.7121. We investigate the sensitivity of the monkeypox infection model and find the parameters that are sensitive R0. In general, we offer a numerical approach, and then for the monkeypox model, we present detailed findings. Some graphical outcomes for disease control in the United States are shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.