Abstract

In the past decade, magneto-nanomechanical approach to biochemical systems stimulation has been studied intensively. This method involves macromolecule structure local deformation via mechanical actuation of functionalized magnetic nanoparticles (f-MNPs) by non-heating low frequency (LF) alternating magnetic field (AMF). Specificity at cellular or molecular level and spatial locality in nanometer scale are its key advantages as compared to magnetic fluid hyperthermia. However, current experimental studies have weak theoretical basis. Several models of magneto-nanomechanical actuation of macromolecules and cells in non-heating uniform LF AMF are presented in the article. Single core-shell spherical, rod-like, and Janus MNPs, as well as dimers consisting of two f-MNPs with macromolecules immobilized on their surfaces are considered. AMF-induced rotational oscillations of MNPs can affect properties and functioning of macromolecules or cellular membranes attached to them via periodic deformations in nanometer scale. This could be widely used in therapy, in particular for targeted drug delivery, controlled drug release, and cancer cell killing. An aggregate composed of MNPs can affect associated macromolecules by force up to several hundreds of piconewton in the case of MNPs of tens of nanometers in diameter and LF AMF below 1 T. AMF parameters and MNP design requirements for effective in vitro and in vivo magneto-nanomechanical treatment are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call