Abstract

Purpose. Available tumor markers have low sensitivity/specificity for the diagnosis of liver tumors. The present study was designed to evaluate the oxidoreductive status of the liver as surrogates of tumor subsistence and growth. Methods. Glutathione species (GSH:GSSG), ophthalmate (OA) concentrations, and their turnover were measured in plasma of rabbits (n = 6) in their healthy state and in the state of tumor growth after implantation of the VX2 carcinoma in their liver. Tumors were allowed to grow for a period of 14 days when rabbits were sacrificed. Livers were removed and cysteine concentration was measured in liver tissue. Results. Tumor growth was found in 100% of the rabbits. Concentration and labeling of GSH/GSSG were similar in experimental animals before and after tumor implantation and to sham animals. In contrast, OA concentration increased significantly in experimental animals after tumor implantation when compared to same animals prior to tumor implantation and to sham animals (P < .05). The concentration of cysteine, a precursor of GSH, was found to be significantly lower in the liver tissue adjacent to the tumor (P < .05). Conclusion. Disturbances in the oxidoreductive state of livers appear to be a surrogate of early tumor growth.

Highlights

  • Liver tumors are the third most common malignancies of the gastrointestinal tract worldwide [1]

  • Tumor growth was found in all six animals (100%) at the time of sacrifice two weeks after tumor implantation (Figure 2)

  • Labeling of glutathione species in plasma, was similar in experimental animals when compared to sham animals (P > .05)

Read more

Summary

Introduction

Liver tumors are the third most common malignancies of the gastrointestinal tract worldwide [1]. In the Western World, secondary liver tumors are more frequent than primary ones, even though the incidence of hepatocellular carcinoma (HCC) has been increasing over the last 20 years, especially in males [2]. Αfetoprotein (AFP) and carbohydrate antigen 19.9 (CA19.9) are the most frequently used serum markers to detect hepatocellular carcinoma and cholangiocarcinoma, respectively [4,5,6,7,8,9]. Carcinoembryonic antigen (CEA) is frequently used for detection and followup of colorectal liver metastases [10]; it may be increased in many other medical conditions. The ideal biomarker for early detection of liver cancer would be specific for the malignant condition and sensitive enough to detect the neoplasm at an early stage, when treatment is still possible [11]. Serum metabolites related to oxidative stress are thought to be a potential biomarker for the early detection of cancer [12, 13]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.