Abstract

We present a novel statistical methodology for analyzing shifts in spatio-temporal fire occurrence patterns within the Brazilian Pantanal, utilizing remote sensing data. Our approach employs a Log-Gaussian Cox Process to model the spatiotemporal dynamics of fire occurrence, deconstructing the intensity function into components of trend, seasonality, cycle, covariates, and time-varying spatial effects components. The results indicate a negative correlation between rainfall and fire intensity, with lower precipitation associated with heightened fire intensity. Forest formations exhibit a positive effect on fire intensity, whereas agricultural land use shows no significant impact. Savannas and grasslands, typical fire-dependent ecosystems, demonstrate a positive relationship with fire intensity. Human-induced fires, often used for agricultural purposes, contribute to an increase in both fire frequency and intensity, particularly in grassland areas. Trend analysis reveals fluctuating fire activity over time, with notable peaks in 2018–2021.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.