Abstract

IntroductionExcretion of cardiovascular magnetic resonance (CMR) extracellular gadolinium-based contrast agents (GBCA) into pleural and pericardial effusions, sometimes referred to as vicarious excretion, has been described as a rare occurrence using T1-weighted imaging. However, the T1 mapping characteristics as well as presence, magnitude and dynamics of contrast excretion into these effusions is not known.AimsTo investigate and compare the differences in T1 mapping characteristics and extracellular GBCA excretion dynamics in pleural and pericardial effusions.MethodsClinically referred patients with a pericardial and/or pleural effusion underwent CMR T1 mapping at 1.5 T before, and at 3 (early) and at 27 (late) minutes after administration of an extracellular GBCA (0.2 mmol/kg, gadoteric acid). Analyzed effusion characteristics were native T1, ΔR1 early and late after contrast injection, and the effusion-volume-independent early-to-late contrast concentration ratio ΔR1early/ΔR1late, where ΔR1 = 1/T1post-contrast - 1/T1native.ResultsNative T1 was lower in pericardial effusions (n = 69) than in pleural effusions (n = 54) (median [interquartile range], 2912 [2567–3152] vs 3148 [2692–3494] ms, p = 0.005). Pericardial and pleural effusions did not differ with regards to ΔR1early (0.05 [0.03–0.10] vs 0.07 [0.03–0.12] s− 1, p = 0.38). Compared to pleural effusions, pericardial effusions had a higher ΔR1late (0.8 [0.6–1.2] vs 0.4 [0.2–0.6] s− 1, p < 0.001) and ΔR1early/ΔR1late (0.19 [0.08–0.30] vs 0.12 [0.04–0.19], p < 0.001).ConclusionsT1 mapping shows that extracellular GBCA is excreted into pericardial and pleural effusions. Consequently, the previously used term vicarious excretion is misleading. Compared to pleural effusions, pericardial effusions had both a lower native T1, consistent with lesser relative fluid content in relation to other components such as proteins, and more prominent early excretion dynamics, which could be related to inflammation. The clinical diagnostic utility of T1 mapping to determine quantitative contrast dynamics in pericardial and pleural effusions merits further investigation.

Highlights

  • Excretion of cardiovascular magnetic resonance (CMR) extracellular gadolinium-based contrast agents (GBCA) into pleural and pericardial effusions, sometimes referred to as vicarious excretion, has been described as a rare occurrence using T1-weighted imaging

  • T1 mapping cardiovascular magnetic resonance imaging (CMR) before and after gadolinium based contrast agent (GBCA) administration has emerged as a useful tool for quantitative tissue characterization in the myocardium [1] but has unexplored potential to characterize the composition of serous fluids in the body

  • Vicarious excretion of iodinated contrast agents (ICA) into both pleural and pericardial effusions have been reported using computed tomography (CT) [19,20,21] and one study noted that all patients that showed excretion of ICA into pericardial effusions followed a benign course [22]

Read more

Summary

Introduction

Excretion of cardiovascular magnetic resonance (CMR) extracellular gadolinium-based contrast agents (GBCA) into pleural and pericardial effusions, sometimes referred to as vicarious excretion, has been described as a rare occurrence using T1-weighted imaging. T1 mapping cardiovascular magnetic resonance imaging (CMR) before and after gadolinium based contrast agent (GBCA) administration has emerged as a useful tool for quantitative tissue characterization in the myocardium [1] but has unexplored potential to characterize the composition of serous fluids in the body. Non-renal excretion of iodinated contrast agents (ICA) [13,14,15,16,17] as well as extracellular GBCA [18] has been referred to as vicarious excretion and is described as a rare occurrence. Excretion of extracellular GBCA into pleural effusions have been reported using CMR and T1weighted imaging approaches [23, 24]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.