Abstract

The dynamics of deep water subsea lifting operations experiencing super-harmonic resonance is analysed in this study. The harmonic balance method is used to solve the non-dimensional equation of motion of the system and the results are compared with time domain integration and with an equivalent energy dissipation model for typical subsea lifting scenarios. It is demonstrated that 1:3 and 1:5 super-harmonic resonances represent significant features of the response of the system and can lead to large dynamic forces in the cable, which may violate the structural limits of the system in real operations. The harmonic balance method presents results almost as accurate as the time domain integration but up to 25 to 35 times faster, while the equivalent energy dissipation model is not able to represent the super-harmonic resonances. Consequently, taking into account the dynamics introduced by super-harmonic resonances is necessary in the analysis of subsea lifting operations, as it can be the limiting design criterion in certain scenarios, and the harmonic balance method can be used as a fast and accurate method to solve this problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.