Abstract

This paper studies the dynamics of coupled planar rigid bodies, concentrating on the case of two or three bodies coupled with a hinge joint. The Hamiltonian structure is non-canonical and is obtained using the methods of reduction, starting from canonical brackets on the cotangent bundle of the configuration space in material representation. The dynamics on the reduced space for two bodies occurs on cylinders in ; stability of the equilibria is studied using the energy-Casimir method and is confirmed numerically. The phase space of the two bodies contains a homoclinic orbit which produces chaotic solutions when the system is perturbed by a third body. This and a study of periodic orbits are discussed in part II. The number and stability of equilibria and their bifurcations for three bodies as system parameters are varied are studied here; in particular, it is found that there are always four or six equilibria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.