Abstract
Low-mass stars are generally understood to form by the gravitational collapse of the dense molecular clouds known as starless cores. Continuum observations have not been able to distinguish among the several different hypotheses that describe the collapse because the predicted density distributions are the almost the same, as they are for all spherical self-gravitating clouds. However, the predicted contraction velocities are different enough that the models can be discriminated by comparing the velocities at large and small radii. This can be done by observing at least two different molecular line transitions that are excited at different densities. For example, the spectral lines of the H2O (110 - 101) and C18O (1-0) have critical densities for collisional de-excitation that differ by 5 orders of magnitude. We compare observations of these lines from the contracting starless core L1544 against the spectra predicted for several different hypothetical models of contraction including the Larson-Penston flow, the inside-out collapse of the singular isothermal sphere, the quasi-equilibrium contraction of an unstable Bonnor-Ebert sphere, and the non-equilibrium collapse of an over-dense Bonnor-Ebert sphere. Only the model of the unstable quasi-equilibrium Bonnor-Ebert sphere is able to produce the observed shapes of both spectral lines. This model allows us to interpret other observations of molecular lines in L1544 to find that the inward velocities seen in observations of CS(2-1) and N2H+ are located within the starless core itself, in particular in the region where the density profile follows an inverse square law. If these conclusions were to hold in the analysis of other starless cores, this would imply that the formation of hydrostatic clouds within the turbulent interstellar medium is not only possible but not exceptional and may be an evolutionary phase in low-mass star formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.