Abstract
Chunking is an important cognitive process allowing the compression of information in short-term memory. The aim of this study is to compare the dynamics of chunking during the learning of a visuomotor sequence in humans (Homo sapiens) and Guinea baboons (Papio papio). We duplicated in humans an experimental paradigm that has been used previously in baboons. On each trial, human participants had to point to a moving target on a touch screen. The experiment involved the repetition of the same sequence of nine items over a 1,000 trials. To reproduce as much as possible the conditions under which baboons performed the task, human participants were tested at their own pace. Results revealed that baboons and humans shared similar chunking dynamics: In both species, the sequence was initially parsed into small chunks that became longer and fewer with practice through two reorganization mechanisms (recombinations and concatenations). Differences were also observed regarding the global decrease in response times that was faster and more pronounced in humans compared with baboons. Analyses of these similarities and differences provide new empirical evidence for understanding the general properties of chunking mechanisms in sequence learning and its evolution across species. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.