Abstract

Cultivation of forest and grassland soils induces heavy changes in soil organic matter (SOM) dynamics. To better predict the effect of cultivation, there is a need to describe which organic pools are affected and to which extent. We used a chronosequence of thick humic forest soils converted to maize cultivation for 40 yr in southwest France. The dynamics of soil carbon was investigated through particle-size fractionation and the use of 13C allowed to distinguish forest-derived organic matter and new crop-derived organic matter. This partitioning of soil carbon by size on one hand and by age on the other provided a precise description of carbon turnover. The level towards which tend the organic pools under cultivation showed that the decay rates of soil carbon were one order of magnitude higher under cultivation than under forest. SOM can thus be considered as deprotected under cultivation. All size fractions appeared to be deprotected to the same extent. A progressive transfer of silt-sized C to clay-sized C was nevertheless suspected and attributed to the decreasing stability of fine silt-sized microaggregates with cultivation. SOM furthermore contained some very stable C present as silt-sized and possibly clay-sized particles. The turnover times of maize-derived organic matter was the same as that observed in similar soils cultivated for centuries. This indicated that the new conditions induced by cultivation were reached in the very first years after forest clearing and that the high initial SOM content and high mineralization rate of initial organic matter did not affect the dynamics of newly incorporated carbon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.