Abstract

When using mathematical models to predict the pathways of biofouled microplastic in the ocean, it is necessary to parametrise the impact of turbulence on their motions. In this paper, statistics on particle motion have been computed from simulations of small, spherical particles with time-dependent mass in cellular flow fields. The cellular flows are a prototype for Langmuir circulation and flows dominated by vortical motion. Upwelling regions lead to particle suspension and particles fall out at different times. The uncertainty of fallout time and a particle's vertical position is quantified across a range of parameters. A slight increase in settling velocities, for short times, is observed for particles with inertia due to clustering in fast downwelling regions for steady, background flow. For particles in time-dependent, chaotic flows, uncertainty is significantly reduced and we observe no significant increase in the average settling rates due to inertial effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.