Abstract

In vivo aroma release during solid food consumption is a complex phenomenon that depends on food structure and composition, as well as on oral processing (combination of mastication and incorporation of saliva into the food product). The objective of this study was to understand and to predict the physico-chemical properties of aroma compounds through the dynamics of flavor release during in-mouth oral processing of food before bolus swallowing. Within this context, the evolution of two aroma compounds during bolus formation was explored by studying the two main properties that account for mass transfer: air/bolus partition and mass transfer coefficients. Four types of industrial cheese products (varying in fat and firmness) flavored with ethyl propanoate and 2-nonanone were chosen. Each matrix was mixed with various amounts of artificial saliva to mimic boluses at different stages of mastication. The air/bolus partition coefficient was determined by the static phase ratio variation method (PRV), while the mass transfer coefficient was obtained by non-linear regression from dynamic headspace experiments. Results showed that there is a dilution effect on the air/bolus partition coefficient and both a dilution and a product effect (firmness) on the mass transfer coefficient of ethyl propanoate in the bolus. These results were also validated with 2-nonanone for the low-fat cheeses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.