Abstract

Extreme environmental changes threaten plant survival and worldwide food production. In response to osmotic stresses, plant hormone ABA activates stress responses and restricts plant growth. However, the epigenetic regulation of the ABA signaling and ABA-auxin crosstalk are not well known. Here we report that the histone variant H2A.Z knockdown mutant in Arabidopsis Col-0 ecotype, h2a.z-kd, has altered ABA signaling and stress performances. RNA-sequencing data showed that a majority of stress related genes are activated in h2a.z-kd. In addition, we revealed that ABA directly promotes the deposition of H2A.Z on SMALL AUXIN UP RNAs (SAURs), which is involved in ABA-repressed SAUR expression. Moreover, we found that ABA represses the transcription of H2A.Z genes through suppressing ARF7/19-HB22/25 module. Our results shed light on a dynamic and reciprocal regulation hub through H2A.Z deposition on SAURs and ARF7/19-HB22/25-mediated H2A.Z transcription to integrate ABA/auxin signaling and regulate stress responses in Arabidopsis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call