Abstract

ABSTRACT Accretion flows are fundamentally turbulent systems, yet are classically modelled with viscous theories only valid on length scales significantly greater than the typical size of turbulent eddies in the flow. We demonstrate that, while this will be a reasonable bulk description of the flow at large radii, this must break down as the flow approaches absorbing boundaries, such as the innermost stable circular orbit (ISCO) of a black hole disc. This is because in a turbulent flow large velocity fluctuations can carry a fluid element over the ISCO from a finite distance away, from which it will not return, a process without analogy in conventional models. This introduces a non-zero directional bias into the velocity fluctuations in the near-ISCO disc. By studying reduced random walk problems, we derive a number of implications of the presence of an absorbing boundary in an accretion context. In particular, we show that the average velocity with which a typical fluid element crosses the ISCO is much larger than is assumed in traditional theories. This enhanced velocity modifies the thermodynamic properties of black hole accretion flows on both sides of the ISCO. In particular, thermodynamic quantities for larger ISCO stresses no longer display pronounced cusps at the ISCO in this new formalism, a result with relevance for a number of observational probes of the intra-ISCO region. Finally, we demonstrate that these extended models reproduce the trans-ISCO behaviour observed in GRMHD simulations of thin discs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call