Abstract

We study the effect of a nearby planar wall on the propulsion of a phoretic Janus micro-swimmer driven by asymmetric reactions on its surface which absorb reactants and generate products. We show that the behaviour of these swimmers near a wall can be classified based on whether the swimmers are mainly absorbing or producing reaction solutes and whether their swimming directions are such that the inert or active face is at the front. We find that the wall-induced solute gradients always promote swimmer propulsion along the wall while the effect of hydrodynamics leads to re-orientation of the swimming direction away from the wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.