Abstract

The dynamics of a satellite-gyrostat moving in the central Newtonian force field along a circular orbit is studied. In the particular case when the vector of gyrostatic moment is parallel to one of the satellite’s principal central axes of inertia, all the equilibrium states are determined. For each equilibrium orientation, sufficient conditions of stability are obtained as a result of the analysis of the generalized energy integral, and necessary conditions of stability are determined as a result of analysis of the linearized equations of motion. The evolution of regions of validity for the conditions of stability of equilibrium positions are studied in detail depending on the parameters of the problem. All the bifurcation values of the parameters at which qualitative changes of the regions of stability take place are determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.