Abstract
A mathematical model for dynamics of a prey-dependent consumption model concerning impulsive control strategy is proposed and analyzed. We show that there exists a globally stable pest-eradication periodic solution when the impulsive period is less than some critical values. Further, the conditions for the permanence of system are given. We show the existence of nontrivial periodic solution if the pest-eradication periodic solution loses its stability. When the unique positive periodic solution lose its stability, numerical simulation shows there is a characteristic sequence of bifurcations, leading to a chaotic dynamics, which implies that the impulsive control model we considered has more complex dynamics including period-doubling bifurcation, symmetry-breaking bifurcation, period-halving bifurcation, quasi-periodic oscillation and chaos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.