Abstract

The objective of this paper is to study systematically the dynamics and control strategy of a singular biological economic model that is described by a differential-algebraic equation. It is shown that when the economic profit passes through zero, this model exhibits the transcritical bifurcation, the Hopf bifurcation, and the limit cycle. In particular, the system undergoes the singularity induced bifurcation at the positive equilibrium, which can result in impulse. Then, state feedback controllers closer to the actual control strategies are designed to eliminate the unexpected singularity induced bifurcation and stabilize the positive equilibrium under the positive profit. Finally, numerical simulations verify the results and illustrate the effectiveness of the controllers. Also, the model with positive economic profit is shown numerically to have different dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call