Abstract
Higher dimensional Chern-Simons theorìes, even though constructed along the same topological pattern as in 2 + 1 dimensions, have been shown recently to have generically a non-vanishing number of degrees of freedom. In this paper, we carry out the complete Dirac Hamiltonian analysis (separation of first and second class constraints and calculation of the Dirac bracket) for a group G × U(1). We also study the algebra of surface charges that arise in the presence of boundaries and show that it is isomorphic to the WZW 4 discussed in the literature. Some applications are then considered. It is shown, in particular, that Chern-Simons gravity in dimensions greater than or equal to five has a propagating torsion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.