Abstract

Molecular classical dynamical simulations of alkanes trapping on platinum surfaces were performed to examine the origin of non-normal energy scaling for molecular adsorption. Conversion of normal to parallel translational energy at normal incidence and conversion of parallel translational energy into normal translational energy at glancing angles are the primary mechanisms which produce non-normal energy scaling of alkanes trapping on cold Pt(111). In addition, a tendency to convert rotational energy gained in the first gas-surface collision into normal translational energy for collisions at glancing incidence further increases the degree of non-normal energy scaling. Increasing surface temperature is shown to have little effect on energy transfer processes in the first bounce but increasing influence on subsequent bounces. Despite difficulties in defining trapping at high surface temperatures, simulations indicate that the initial trapping probability of ethane on Pt(111) does not fall by more than a factor of two over the surface temperature range of 100–700 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.