Abstract

ABSTRACT Observations of star-forming regions provide snapshots in time of the star formation process, and can be compared with simulation data to constrain the initial conditions of star formation. In order to make robust inferences, different metrics must be used to quantify the spatial and kinematic distributions of stars. In this paper, we assess the suitability of the INdex to Define Inherent Clustering And TEndencies (INDICATE) method as a diagnostic to infer the initial conditions of star-forming regions that subsequently undergo dynamical evolution. We use INDICATE to measure the degree of clustering in N-body simulations of the evolution of star-forming regions with different initial conditions. We find that the clustering of individual stars, as measured by INDICATE, becomes significantly higher in simulations with higher initial stellar densities, and is higher in subvirial star-forming regions where significant amounts of dynamical mixing have occurred. We then combine INDICATE with other methods that measure the mass segregation (ΛMSR), relative stellar surface density ratio (ΣLDR), and the morphology (Q-parameter) of star-forming regions, and show that the diagnostic capability of INDICATE increases when combined with these other metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.