Abstract

Based on the multi-body system dynamics in the ADAMS environment, a virtual prototype of the reel fulcrum of crane was developed. In this model, the whole system was disassembled lifting mechanism system with flexible body dynamics model of the wire rope. The virtual running environment was established according to the actual crane operation cases, which is designed the hanging & lifting working process. It is the key step to build the reel fulcrum dynamics model for performance analysis of system dynamics, which is the basis for the optimize design of the reel fulcrum of crane. Theoretical model analysis usually does not consider the coupling force status of the reel fulcrum of crane. It is a steady-state analysis to the reel fulcrum of crane models. These models have played an important role in the assessment of the reel fulcrum of crane performance and the system parameters, but do not reveal the interaction of the reel fulcrum of crane and the wire rope, which fail to be a comprehensive understanding practical system dynamics characteristic. Virtual prototype simulation results will be applied to prototype design and evaluation, and save a lot of manpower and material resources. At the same time,the method has an advantage for dynamics analysis to simulating some dangerous movement conditions, which is hard to be replayed or simulated at the test actual working condition site. In particular, some cases cannot be recurrence in the accident handling process. The simulation results show that the response value. Variable stiffness characteristics of wire rope of hoisting mechanism are implemented successfully through discrete multiple rigid body being applied to the wire rope in this paper. The establishment of the Reel fulcrum dynamic model is based on ADAMS, which realizes the reel fulcrum of crane system coupling modeling. These results show that the model reflects the actual dynamics of the reel fulcrum of crane, and also presents that some of the theoretical analysis results cannot be usually confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.