Abstract
In this paper, the fluid–structure interaction of floating offshore wind turbine (FOWT) platforms under complex ocean conditions is investigated using OpenFOAM and in-house developed models. Two types of FOWT platform, i.e., a semi-submersible platform and a barge platform, are studied for their dynamic responses to either wave or current. The results reveal that a semi-submersible platform exhibits larger cross-flow motion and lock-in phenomenon, while a barge platform experiences smaller motion with no significant lock-in within the velocity range examined. The combined wave–current conditions are further studied for the semi-submersible platform, with different angles between wave and current, the current speeds, and wave parameters. Unlike other investigations focusing on colinear wave–current interaction, in which the waves usually mitigate vortex-induced motion (VIM); here, we find that waves might lead to an enhanced VIM with a large angle between current and wave. The evaluation on the interaction effect factor shows that the largest wave height in the lock-in region does not lead to the most dangerous scenario, herein, the largest platform motion. Instead, a smaller wave height with a large wave period can induce even larger motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.