Abstract

We consider the dynamic response of a single degree of freedom system with preloaded, or “setup,” springs. This is a simple model for systems where preload is used to suppress vibrations. The springs are taken to be linear and harmonic excitation is applied; damping is assumed to be of linear viscous type. Using the piecewise linear features of the model equations we determine the amplitude and stability of the periodic responses and carry out a bifurcation analysis for these motions. Some parameter regions which contain no simple stable periodic motions are shown to possess chaotic motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.