Abstract

Relevance. Macrophages exist in the wound in several phenotypic states, and the effect of these cells on intercellular co-operation at each stage of tissue repair depends on their specific phenotype. Depending on the microenvironment, they can quickly change their functional phenotype from proinflammatory M1 to anti-inflammatory M2, and vice versa. However, the effect of the functional phenotype of macrophages on cellular metabolism is not unilateral, the change in the features of metabolism, especially energy, also significantly affects the phenotype of cells.
 Objective. The aim of this work is to analyze the oxidoreductases activity of neutrophils, macrophages and fibroblasts in the connective tissue of the white rats skin under conditions of local thermal damage when there is a carbohydrate metabolism violation to predict the efficiency of the tissue regeneration during the repair process.
 Material and methods. There were carried out the histochemical and pathomorphological researches of the skin burn wound healing dynamic (3, 7, 14, 21 days) of the white mature male rats (Wistar line) with the weight of 180-210g without somatic pathology (control group, n=28) and with stable uncorrected hyperglycemia modeled by streptozotocin (n=28). It has been carried out the histochemical study of oxidoreductase enzymes activity on the cryostat sections (10 μm thickness): succinate dehydrogenase (SDH), lactate dehydrogenase (LDH), NADH- dehydrogenase (NADH-DH). The histochemical index of the oxidoreductase enzymes activity was being calculated by the semi-quantitative method.
 Results. The study of the cells’ quantitative changes in the connective tissue regenerate and the reactions of energy metabolism against the background of hyperglycemia has some features. The consistency of the connective tissue infiltration by the leukocytes of different types during reparative regeneration after burn injury was being happened in a classical scenario with a quantitative predominance of cells in a group of animals without somatic pathology that points to the reduction of blood reactivity under conditions of glycemia. In the dynamics of the healing process the change of the LDH and NADH-DH activity in the macrophages and fibroblasts had a tendency to increase on the 7th and 14th days of the experiment and differed significantly during observation from the parameters in the 3d day (p<0,05). The most exemplary for study of the dynamics of the oxidation-reduction enzymes activity in the cells of the regenerate was the ratio of SDH/LDH. Comparing the data of the control group of animals and under conditions of hyperglycemia the most expressed and multidirectional changes of the oxidation-reduction enzymes’ activity occurred in macrophages in the different phases of the reparative process.
 Conclusions. We believe that such differences can indirectly indicate the untimely change of the macrophages’ functional phenotype during restorative processes in the tissues. So as the macrophages are the "main conductor" of intercellular relationships it is suggested that this mechanism may be one of the reasons for the ineffective wound healing under diabetes mellitus.

Highlights

  • IntroductionMacrophages exist in the wound in several phenotypic states, and the effect of these cells on intercellular co-operation at each stage of tissue repair depends on their specific phenotype

  • The consistency of the connective tissue infiltration by the leukocytes of different types during reparative regeneration after burn injury was being happened in a classical scenario with a quantitative predominance of cells in a group of animals without somatic pathology that points to the reduction of blood reactivity under conditions of glycemia

  • The most exemplary for study of the dynamics of the oxidation-reduction enzymes activity in the cells of the regenerate was the ratio of succinate dehydrogenase (SDH)/lactate dehydrogenase (LDH)

Read more

Summary

Introduction

Macrophages exist in the wound in several phenotypic states, and the effect of these cells on intercellular co-operation at each stage of tissue repair depends on their specific phenotype. They can quickly change their functional phenotype from proinflammatory M1 to anti-inflammatory M2, and vice versa. The effect of the functional phenotype of macrophages on cellular metabolism is not unilateral, the change in the features of metabolism, especially energy, significantly affects the phenotype of cells

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call