Abstract

Three of the four well-established bacterial cytoskeletal systems-the MreB, MinCDE, and FtsZ systems-undergo a variety of short-range and long-range dynamic behaviors. These include the cellular reorganization of the cytoskeletal elements, in which the proteins redistribute from a predominantly helical pole-to-pole pattern into annular structures near midcell. Despite their apparent similarity, these dramatic redistributional events in the three systems are in large part independent of each other. In addition, some of the cytoskeletal structures undergo oscillatory behavior in which the helical elements move repetitively back-and-forth between the two ends of the cell. The details and mechanisms underlying these dynamic cellular events are just now being revealed by fluorescence microscopy of intact cells, fluorescence photobleaching recovery studies, single molecule tracking techniques, and in vitro studies of the purified proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.