Abstract

In the present paper, the dynamic mechanical properties of random-in-plane short fiber-reinforced epoxy resin composites were studied by using a rheometrics solids analyzer. The three-point bend testing of the four composites (glass fiber/913 epoxy resin, glass fiber/924 epoxy resin, carbon fiber/913 epoxy resin and carbon fiber/924 epoxy resin) was carried out over temperatures from −100°C to 200°C at a frequency of 10 Hz and strain 0.05%. The composites based on 924 epoxy resin, which has been designed specially for high temperature applications, have less energy loss than the 913 epoxy resinbased composites. For the same resin, the carbon fiber-reinforced composites have less energy loss than the glass fiber-reinforced composites. All the composites have less energy loss than their corresponding matrices; the greater the fiber content, the lower the energy loss. The beta transition of 913 epoxy resin has been shifted to a higher temperature after being reinforced. It was shifted from −50°C to −30°C after being reinforced with glass fiber and made a diffuse shoulder-like peak commencing at −30°C after being reinforced with carbon fiber. The 924 epoxy resin has undergone the same change in beta transition as the 913 resin, though to a smaller extent. The phenomenon suggested that interactions between the macromolecules of the epoxy resins and the molecules along the fiber's surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call