Abstract
Dimensionless nonlinear dynamical equations of a tilted support spring nonlinear system with critical components were obtained under the action of a rectangular pulse, and the numerical results of the shock response were studied using Runge-Kutta method. To evaluate the dynamic characteristics of critical components, a new concept of three-dimensional shock response spectra was proposed, where the ratio of the maximum shock response acceleration of critical components to the peak pulse acceleration, the pulse duration, and the frequency ratio were three basic parameters of three-dimensional shock response spectra. Based on the numerical results, the effects of the angle, the peak pulse acceleration, the mass ratio, the frequency ratio, and the pulse duration on the shock response spectra were discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.