Abstract

This paper used the systematic generalised method of moments (SYS-GMM) to investigate the dynamic heterogeneous effects of renewable-energy technological progress (RETP) and fossil-fuel technological progress (FFTP) on the consumption of 10 metal materials from 1996 to 2016. The findings indicate strong evidence that the technological progress of the electric power industry exhibits a strong metal consumption effect. Specifically, both RETP and FFTP significantly increase the consumption of base metals such as iron, chromium, aluminium, copper, lead, nickel and zinc, while the consumption of critical metals such as indium, neodymium and dysprosium is mainly due to RETP. Additionally, we also found that RETP is the main contributor to metal consumption in the electric power industry in countries dominated by fossil fuel electric power generation. In contrast, in the group of countries dominated by renewable energy electric power generation, RETP and FFTP work together to increase the consumption of metal materials. The dynamic heterogeneous consumption effects of different types of technological progress on different types of metals in the electric power industry provide effective policy support for national low-carbon electric power supply and metal mineral resource security strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.