Abstract
The relationship between the capillary pressure and saturation is a primary factor to describe and simulate the multiphase flow. This relationship is also fundamental to understand the characteristics of oil and gas reservoirs and make the reservoir development plan. Traditionally, the capillary pressure is measured under the equilibrium process; however, this equilibrium is hard to establish when the multiphase flow is expected in low to tight permeability porous media, and the capillary pressure is dynamic. This laboratory study conducts specially designed dynamic displacement experiments to examine the dynamic effect in capillary pressure in ultra-low permeability sandstone oil reservoirs. The dynamic capillary pressure, the dynamic relative permeabilities, the dynamic coefficient and the change rate of water saturation are obtained. Results show that the dynamic coefficient is relatively larger in ultra-low permeability reservoirs compared with that in high to low permeability reservoirs. Difference between the dynamic and the steady capillary pressures becomes more significant for less permeable porous media, with a higher dynamic coefficient and a stronger dynamic effect. Wettability advancement has been triggered during the dynamic displacement process, which is responsible for the water-wet rock before the displacement to be oil-wet during the displacement process. The difference between the dynamic and the steady relative permeabilities becomes obvious, and the dynamic effect in capillary pressure cannot be neglected when the permeability reaches ultra-low. The dynamic coefficient can reveal the shape of the displacement front. Cited as : Li, Y., Li, H., Cai, J., Ma, Q., Zhang, J. The dynamic effect in capillary pressure during the displacement process in ultra-low permeability sandstone reservoirs. Capillarity, 2018, 1(2): 11-18, doi: 10.26804/capi.2018.02.01
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.