Abstract

Accumulation of oxidative stress, DNA damage and impaired DNA repair appear to play critical roles in the decline of testicular function with aging. However, when those factors begin to lose control in testis during aging has not yet been well understood. This study was designed to assess the changes of oxidative stress and DNA damage status, and DNA repair capacity in testis during aging. Thus, male Sprague-Dawley rats at 3, 9, 15 and 24months of age were used to delineate the dynamic changes in testicular weight and index, testosterone concentration, testicular histology, Nrf2-mediated oxidative stress, DNA damage, DNA repair and apoptosis. Results showed that testicular weight and index, testosterone concentration and spermatid number progressively declined from 9 to 24months of age. Similarly, seminiferous tubule diameters and seminiferous epithelium heights gradually diminished with aging. Nrf2-mediated antioxidant defense ability was significantly impaired in testis with increasing age including decreased the activity of SOD and the expression levels of Nrf2, HO-1 and NQO-1, and increased the contents of MDA. In addition, DNA damage including DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) also progressively increased accompanied by increased levels of 8-hydroxydeoxyguanosine (8-OHdG) and γ-H2AX, and activated ATM/Chk2 and ATR/Chk1 pathway. Consistent with the results of Nrf2 pathway, the expression levels of APE1, OGG1 and XRCC1 involved in base excision DNA repair (BER) pathway increased from 3 to 9months of age, and then gradually decreased after 9months of age. Finally, TUNEL and Western blot results further confirmed germ cell apoptosis progressively increased from 3 to 24months of age as evidenced by decreased ratio of Bcl-2/Bax and levels of Bcl-2 expression, and increased Bax expression levels. Taken together, our results suggest that downregulation of antioxidant ability mediated by Nrf2 pathway and impairment of BER capacity might correlate with increased DNA damage, and then induce declining testicular function during aging after adult.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call