Abstract

The theoretical and computational aspects of interval methodology based on Chebyshev polynomials for modeling multibody dynamic systems in the presence of parametric uncertainties are proposed, where the uncertain parameters are modeled by uncertain-but-bounded interval variables which only need the bounds of uncertain parameters, not necessarily knowing the probabilistic distribution. The Chebyshev inclusion function which employs the truncated Chevbyshev series expansion to approximate the original function is proposed. Based on Chebyshev inclusion function, the algorithm for solving the nonlinear equations with interval parameters is proposed. Combining the HHT-I3 method, this algorithm is used to calculate the multibody systems dynamic response which is governed by differential algebraic equations (DAEs). A numerical example that is a slider-crank with uncertain parameters is presented, which shows that the novel methodology can control the overestimation effectively and is computationally faster than the scanning method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.