Abstract

We propose a very simple physical mechanism responsible for the formation of the Low Ionization Line part of the Broad Line Region in Active Galactic Nuclei. It explains the scaling of the Broad Line Region size with the monochromatic luminosity, including the exact slope and the proportionality constant, seen in the reverberation studies of nearby sources. The scaling is independent from the mass and accretion rate of an active nucleus. The mechanism predicts the formation of a dust-driven wind in the disk region where the local effective temperature of a non-illuminated accretion disk drops below 1000K and allows for dust formation. We explore now the predictive power of the model with the aim to differentiate between this model and the previously proposed mechanisms of the formation of the Broad Line Region. We discuss the expected departures from the universal scaling at long wavelength, and the role of the inclination angle of the accretion disk in the source. We compare the expected line profiles with Mg II line profiles in the quasars observed by us with the SALT telescope. We also discuss the tests based on the presence or absence of the broad emission lines in low luminosity active galaxies. Finally, we discuss the future tests of the model to be done with expected ground-based observations and satellite missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.