Abstract

Context. Red supergiant (RSG) stars exhibit significant mass loss by means of a slow, dense wind. They are often considered to be the more massive counterparts of Asymptotic Giant Branch (AGB) stars. While AGB mass loss is related to their strong pulsations, the RSG are often only weakly variable. This raises the question of whether their wind-driving mechanism and the dust composition of the wind are the same. Aims. We study the conditions at the base of the wind by determining the dust composition of a sample of RSG. The dust composition is assumed to be sensitive to the density, temperature, and acceleration at the base of the wind. We compare the derived dust composition with the composition measured in AGB star winds. Methods. We compile a sample of 27 RSG infrared spectra (ISO-SWS) and supplement these with photometric measurements to derive the full spectral energy distribution (SED). These data are modelled using a dust radiative-transfer code, taking into account the optical properties of the relevant candidate materials to search for correlations between mass-loss rate, density at the inner edge of the dust shell, and stellar parameters. Results. We find strong correlations between the dust composition, mass-loss rate, and the stellar luminosity, roughly in agreement with the theoretical dust condensation sequence. We identify the need for a continuous (near-)IR dust opacity and tentatively propose amorphous carbon, and we note significant differences with AGB star winds in terms of the presence of PAHs, absence of “the” 13 μm band, and a lack of strong water bands. Conclusions. Dust condensation in RSG is found to experience a freeze-out process that is similar to that in AGB stars. Together with the positive effect of the stellar luminosity on the mass-loss rate, this suggests that radiation pressure on dust grains is an important ingredient in the driving mechanism. Still, differences with AGB stars are manifold and thus the winds of RSG should be studied individually in further detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.